
CknXREI Call No. 0?S /^ »

Jopy No / <of ,V- toys..

—<

ESD-TR-75-62 MTR-2924

DOWNGRADING IN A SECURE MULTILEVEL
COMPUTER SYSTEM: THE FORMULARY CONCEPT

D. F. Stork

MAY 1975

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
Hanscom Air Force Base, Bedford, Massachusetts

Approved for public release;
distribution unlimited.

Project No. 7070
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract No. F19628-73-C-0001

Al»wifeH

When U.S. Government drawings, specifications,

or other data are used for any purpose other

than a definitely related government procurement

operation, the government thereby incurs no

responsibility nor any obligation whatsoever; and

the fact that the government may have formu-

lated, furnished, or in any way supplied the said

drawings, specifications, or other data is not to be

regarded by implication or othe-wise, as in any

manner licensing the holder or any other person

or corporation, or conveying any rights or per-

mission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Do not return this copy. Retain or destroy

REVIEW AND APPROVAL

This technical report has been reviewed and is approved
for publication.

**L#A
WILLIAM R. PRICE, lLt, USAF ROGjaf R. SCHELL, Major, USAF
Project Engineer Prefect Engineer

FOR THE COMMANDER

ROBERT W. O'KEEFE, Colonel, USAF
Director, Information Systems
Technology Applications Office
Deputy for Command & Management Systems

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

ESD-TR-75-62
2. GOVT ACCESSION NO 3 RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

DOWNGRADING IN A SECURE MULTILEVEL
COMPUTER SYSTEM: THE FORMULARY CONCEPT

5. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

MTR-2924
7. AUTHORfs)

D. F. Stork

8. CONTRACT OR GRANT NUMBER(s)

F19628-73-C-0001

9 PERFORMING ORGANIZATION NAME AND ADDRESS

The MITRE Corporation
Box 208
Bedford, MA, 01730

10. PROGRAM ELEMENT, PROJECT, TASK
AREA ft WORK UNIT NUMBERS

Project No. 7070

II. CONTROLLING OFFICE NAME AND ADDRESS
Deputy for Command and Management Systems
Electronic Systems Division, AFSC
Hanscom Air Force Base, Bedford, MA, 01731

12. REPORT DATE

MAY 1975
'3. NUMBER OF PAGES

60
U MONITOPING AGENCY NAME ft ADDRESSfi' diflerent from Controlling Office) 15. SECURITY CLASS, (ol this roporf;

UNCLASSIFIED

15a. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol the abstract entered in Btock 20, it dllferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

ACCESS CONTROL
COMPUTER SECURITY
DOWNGRADING
MATHEMATICAL MODELS

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

The tasks to be performed during the development of the Secure Multilevel Data
Base System include the construction of a capability for the transformation of data of
higher levels of classification to data at lower levels. This- capability is to be part
of a system in which access control is based upon a security kernel for the PDP-11/45
In this report a mechanism for facilitating downward transformations is developed,
and the impact of the mechanism upon both the Bell-LaPadula model of secure computer

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

TTNCT.ASRTFTflD
SECURITY CLASSIFICATION OF THIS PAGEfWhan Data Entered)

20. ABSTRACT (Concluded)

systems and the security kernel is discussed. An expository treatment of the model
and kernel is also included.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEfHTien Data Entered)

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

SECTION I INTRODUCTION
PURPOSE OF THE PAPER
THE CONTEXT
ORGANIZATION OF THE PAPER

Page
2

3
3
3
5

SECTION II THE MATHEMATICAL MODEL AND THE SECURITY KERNEL 6
A BRIEF ACCOUNT OF THE BELL-LaPADULA MODEL 6
THE PDP-11/45 SECURITY KERNEL 10

Segment Objects 10
Processes 12
The Security Data Base and the Segment
Hierarchy 13

Access Rules - The Kernel Functions 14

SECTION III DOWNGRADING IN THE CONTEXT OF THE BELL LaPADULA
MODEL 17

INTRODUCTION 17
Definition of Downgrading 17
Downgrading Approaches 17
Sanitization 17
Internal and External Considerations 19

APPROACHES TO DOWNGRADING: MODEL IMPACT 20
Level Change 20
Downgrading Power 21
Object Integrity 22
Write-down 22
Relative Merits of the Approaches 25
Summary 25

SECTION IV FORMULARY CONTROLS 27
THE DEFINITION OF A FORMULARY 27
CONTROLS INHERENT IN THE SECURITY KERNEL 28
USER-FORMULARY COMMUNICATION ELEMENTS 29
USER-FORMULARY COMMUNICATION SEQUENCES 36
OBJECT INTEGRITY AND CORRECTNESS OF FORMULARIES 40

SECTION V MODELLING DATA PATHS
INTRODUCTION
TWO PRINCIPLES OF PATH CONSTRUCTION
IDENTIFICATION OF PATH TYPES
FORMALIZING PATHS
USING THE DATA PATH MODEL
CONCLUSION

48
48
48
50
52
55
57

TABLE OF CONTENTS (Concluded)

Page
LIST OF REFERENCES 58

LIST OF ILLUSTRATIONS

Figure Number

1 Temporal Interpretations of Sanitization 18
2 An Operational Configuration with a

Downgrading Scheme 41
3 Direct Path 51
4 Indirect Path 51
5 Evolving Indirect Path (Entries Intact) 51
6 Evolving Indirect Path (Entry Removed) 51
7 Evolving Nonpath 52
8 Schematic Flow of Data Path Model 56

SECTION I

INTRODUCTION

PURPOSE OF THE PAPER

This paper will explore the possibility of incorporating a

facility for downgrading (by which we mean the transformation of

information resident in a data set of a given security level into

information which may reside in a data set of a lower level) in a

secure multilevel data base system in which access control is in

accordance with a mathematical model of secure computer systems.

The downgrading facility will enable the data base system to support

a sensor correlation environment.

Within the paper, prior to the introduction of the formulary

mechanism that permits the downgrading capability, an exposition is

presented of the mathematical model and the security kernel upon

which the formulary concept and formulary mechanism are superimposed.

Then the concept and mechanism are developed and their impact upon

the model and kernel is assessed.

In the remainder of this introductory section we will establish

the context of the ensuing discussion and outline the organization

of the paper.

THE CONTEXT

One of the many topics under the heading of computer security

is that of access control. This topic, which has been pursued

independently of others such as privacy policies and physical security,

provides our context.

The work done at MITRE in the area of access control centers on

the concept of a reference monitor, which was identified by the ESD

Computer Security Technology Planning Study Panel. [_lj • A reference

monitor is a hardware/software mechanism that mediates all attempts

by subjects ("accessors") to gain access to objects ("accessees")

within a computer system. The mediation requires consultation of a

data base that describes the security state of the system. The

reference monitor satisfies three postulates: (1) it is invoked on

every access attempt; (2) it is tamperproof: (3) it is small and

certifiably correct.

A mathematical model was constructed [2] that (1) identifies in

abstract form a data base that describes the security state of a

computer system; (2) defines security in terms of relations among

elements of that data base; and (3) provides rules for dynamic alter-

ation of that data base in a manner that preserves security and some

other desirable properties of the system.

A security kernel (i.e., software portion of the reference moni-

tor) was designed for a PDP-11/45 equipped with a memory management

unit. The role of the security kernel is the maintenance of a

security data base and the physical resources of the machine in

response to requests by processes for access to objects and for

alterations in the security data base. The design of the security

kernel is based upon the mathematical model of secure systems. [3]

Among the goals of Project 7070 is the demonstration of the

PDP-11/45 security kernel in support of a secure multilevel data

base system. Some processes using this system will have the ability

to downgrade data within the system. The existence of such an

ability raises several questions about the underpinnings of the data

base system:

Can the mathematical mode accommodate downgrading?

Can the model be altered to do so?

Is the security kernel hospitable to downgrading?

What modifications are indicated in the kernel in order to

admit downgrading?

What aspects of downgrading are apparent to a user?

It is to these questions that this paper is addressed.

ORGANIZATION OF THE PAPER

Section 2 provides brief accounts of the Bell-LaPadula model of

secure systems and of the security kernel designed for a PDP-11/45

that is based upon that model.

Section 3 explores the meaning of "downgrading" and associated

terms, defines and evaluates two approaches (on the level of mathe-

matical model) to downgrading, and decides to use the approach which

exploits the "trustworthy subject" concept of the model.

In Section 4, the mechanisms of a formulary (a process which

does downgrading) are discussed within the context of the security

kernel. Several design choices are described, and the effect upon

these choices of controls already existing in the kernel are dis-

cussed. Kernel modifications attendant upon incorporation of a

formulary mechanism are also explored, as is the problem of object

integrity.

Section 5 deals with a model of data paths, which are relevant

to the issue of object integrity. The model builds upon the Bell-

LaPadula model.

SECTION II

THE MATHEMATICAL MODEL AND THE SECURITY KERNEL

A BRIEF ACCOUNT OF THE BELL-LaPADULA MODEL

In [2J, Bell and LaPadula formalized concepts of computer se-

curity in a mathematical model of a secure computer system. The

elements of this model include

objects

subjects

modes of access and access permissions

security level and formal access categories

object hierarchy

record of current access

access rules

Objects are entities within a computer system to which access

must be gained in the course of the system's use.

Subjects are those entities that seek to gain access to

objects.

The basic modes of access which a subject may enjoy with

respect to an object are the read, write, append, and execute modes.

Access permissions for particular modes are recorded on a per-

subject, per-object basis in an access matrix.

Each object is assigned a security classification and formal

access category, presumably reflecting the level of sensitivity of

it
As used here, "write" includes "read", while "append" is a "pure"
write.

the object. Each subject has maximum and current security classifi-

cations and formal access categories (i.e., four security descriptors

per subject). The set of security classifications is linearly (i.e.,

sequentially) ordered, while the collection of access categories is

ordered by inclusion.

The object hierarchy can be thought of as a directed tree whose

set of nodes consists of objects in the system; this tree has a single

root node. Note that every object in the hierarchy (except the root

object) has a single parent object. The hierarchy is compatible with

the object classification and category labels if the classification

and category of each object are at least as high as those of its

parent.

The record of current access is, as its name implies, a record

of which subjects are currently accessing which objects in which

modes. To clarify the distinction between current access and access

permission, note that the former has an immediate quality (it is

what is happening now) while the latter is indefinite (it describes

what may be allowed to happen at some time).

The system state consists of the access matrix, the classifica-

tion and category labels of subjects and objects, the object hier-

archy, and the record of current access. It contains all security-

related information about a computer system at a given time. A state

(i) is secure if no subject is accessing (in read or write

mode) an object whose classification or category is greater

than the maximum classification or category of that subject;

(ii) satisfies the *-property if a subject may only (a) write

an object at its current level; (b) read an object of its

current level or a lower level; (c) append to an object

of its current level or a higher level. The model also

includes a provision for trustworthy subjects, which are

those which are exempt from *-property restrictions.

(iii) is compatible if the object hierarchy is compatible

with the classification and category labels.

Within the context of the security model, a computer system is^

a collection of state sequences. The progression of a system from

state to state is governed by the application of access rules. An

access rule is a function whose arguments are of the form (request,

state) and whose values are of the form (decision, state). A request

is made by a subject in order to:

gain or release current access to a specified object in a

specified mode;

create a specified object at a specified place in the object

hierarchy:

delete a specified object from the system;

give or rescind access permissions for a specified object in a

specified mode of access to a specified subject;

change the current classification and category of the requesting

subject.

A decision to grant or deny a request is made and the system

state is modified or left unaltered according to the algorithm of the

particular rule invoked. The access rules do not enforce security,

*-property, and compatibility directly; rather, they preserve these

properties if the properties are possessed by the input state. Thus,

if the initial state of the system is secure, satisfies the *-property,

and is compatible, then the system will have these qualities through-

out its history.

An informal interpretation of the elements described above will

provide a link between the model and reality. One may think of

objects as files, and of subjects as users or user surrogates

(processes) within the system. (This is not an exhaustive list of

examples. Objects could be data or program files, input/output

devices, messages which are sent to processes — in short, anything

which can be accessed is an object.)

The notions of security and *-property are intended to prevent

compromise of information in the sense of unauthorized disclosure;

an untrustworthy subject cannot gain a combination of access rights

that will enable it to read a high-level object and write one of a

lower level. The object hierarchy models a collection of directory

objects and non-directory objects which can be thought of as an

abstraction of a hierarchical file system. The access rules provide

a mechanism by which the objects can change in number and in their

relations with subjects. The security level functions, the access

permissions, the record of current access, and the object hierarchy

all provide criteria for the application of the access rules and

reflect the consequences of such applications.

*
Enforcement of compatibility prevents at least two undesirable sit-
uations from occurring. The first situation affects security. If
an unclassified object were attached to (i.e., described in) a
secret directory, a secret process could not write directly in the
unclassified object. However, if the process enjoyed write access
to the directory, it could write and alter the attributes of the
object, thereby affecting the accessibility of the object to
lower-level processes. Degrees of accessibility (as observed by a
lower-level process) could serve as a signaling alphabet and result
in the implementation of a write-down path in violation of the
intent of the *-property.

The second consideration is the difficulty - disclosure problems
aside - of using a system in which a process cannot always read the
directories of objects it needs to use.

Other researchers in computer security have worked on an alter-

native model addressed to the problem of sabotage as well as models

concerned with compromise (unauthorized disclosure). The sabotage

model deals with unauthorized upward-directed modification of objects

rather than unauthorized downward-directed disclosure. The sabotage

model is also phrased in terms of subjects, objects, and security

levels, but the levels measure degrees of trust rather than degrees

of privilege. (For example, an unclassified compiler written by a

person with a secret clearance might be trusted — i.e., useable —

to compile secret code.) In order to prevent sabotage, a subject

may only read objects of levels equal to or above its own level,

may only write objects of levels equal to or below its own level.

The concept of levels of trust appears later in this paper in the

discussion of object integrity under the name of levels of safety.

THE PDP-11/45 SECURITY KERNEL

This section contains an account of how the Bell-LaPadula model

has been interpreted for the design of a security kernel for a PDP-

11 /45 equipped with Memory Management Unit.

Segment Objects

The Memory Management Unit (MMU) option of the PDP-11/45 permits

the identification and protection of one type of object, which is

called a segment. [4] From the point of view of the MMU, a segment

is a region in main memory consisting of contiguous locations and is

of specified starting address and length. Every memory reference by

the processor is routed through the MMU, where (1) the address is

translated from a virtual to a physical address, and (2) protection

codes pertaining to the segment in which the location addressed lies are

10

checked and enforced. The hardware supports enforcement of read,

read/write, and no-access protection, where enforcement may take the

form of traps or aborts upon detection of attempted access.

The access rules of the model are algorithmic in form and lend

themselves to implementation as procedures. When these procedures

are coded and positioned so that they may be applied for the purpose

of access control (i.e., placed in the main memory of the computer),

they are objects and need to be protected. The PDP-11/45 meets this

need for protection by providing a hierarchy of three machine states

(or modes, or domains) called the kernel, supervisor, and user

domains. The hardware effects the hierarchical ordering of domains

by:

1) permitting the execution of certain machine instructions in

the kernel domain only, and

2) restricting the manner in which the instructions which pass

control from domain to domain may operate.

The security kernel protects itself by

1) ensuring that its own procedures are the only ones that

execute in kernel mode, and

2) executing interpretively all attempts to access the security

kernel data base that originate with processes executing outside the

kernel.

Interpretive execution of access attempts within the kernel per-

mits objects accessed in the kernel domain to be portions of segments,

whereas a directly accessed object outside the kernel must be coexten-

sive with a single segment.

11

With the MMU in operation, a maximum of sixteen segments is con-

currently accessible within each domain. This maximum is achievable

if a distinction is made between instruction (read/execute or read/

write/execute) segments and data (read or read/write only) segments,

in which case eight segments of each type are available. If it is

not deemed desirable or feasible to make the distinction between

data and instructions, then only eight segments (per domain) of a

single undifferentiated type will be available. (Such is the case

for the current security kernel design.) Accommodation of a larger

number of segments within main memory requires management of the

segmentation registers. In order to satisfy a need for a still lar-

ger lumber of segments, swapping between secondary storage and main

memory will be necessary. With swapping in use, it is no longer

viable to identify a segment as a region of main memory. Rather,

the definition of a segment (at least, one which is not permanently

resident in main memory) must be altered, to wit: A segment is a

collection of contiguous virtual memory locations which is identified

by its "home" disk address, and which may be inserted into an appro-

priately sized and protected region of main memory.

Processes

The type of subject recognized by the security kernel is an

ordered pair whose components are a process and a domain. [5] A process,

in turn, is identified by the kernel as operating on behalf of a

user/project pair. Information that describes processes is contained

in data structures called process segments and the process table that

are accessed in the kernel domain.

The word "domain" has a dual meaning. One aspect refers to the

machine state. In the second meaning, a domain is the environment of

programs and data in which a process is operating. A domain (in the

12

machine sense) allows construction of an address space consisting of

up to eight concurrently accessible segments, and therefore facili-

tates the definition of a domain in the environmental sense.

The Security Data Base and the Segment Hierarchy

The security data base in the mathematical model consists of an

access matrix (which describes access permissions, or need-to-know),

classification and category functions, a record of current access,

and a description of the object hierarchy. In the current security

kernel design, this data is not centralized and monolithic, but is

distributed through the system.

The access matrix is stored column-wise by segment in the

directory of a segment object. The directories are themselves seg-

ment objects, and as such are subject to access controls. Access

controls on directory segments are more restrictive than those on

non-directories in that directories can only be accessed in the ker-

nel domain; i.e., interpretively.

Classification and categories for a segment object are main-

tained in both a segment's directory and in the record of current

access (whose interpretation will be described shortly). A subject's

classification and categories are recorded in the process table and

a process segment.

The record of current access, which is called the Active Segment

Table, is resident in main memory and is accessed in the kernel domain.

It contains physical (i.e., implementation) details about segments as

well as information corresponding to elements of the model.

Finally, the structure of the object hierarchy is described

locally by pointers in the directories. The "parent" of the model

13

corresponds to the "directory" of the kernel.

The security and access attributes of segment objects and pro-

cesses executing in non-kernel domains are recorded explicitly in

data structures accessed in the kernel domain. However, the attri-

butes of objects (other than directories) accessed in the kernel

domain are implicitly described by the operation of the security

kernel.

For example, every process may execute kernel procedures with-

out security checking; hence, every process has read access permission

to the security kernel procedures, and the security level of these

procedures is the low for the system. Furthermore, treatment of the

seurity kernel as a privileged section limits current access to the

kernel to the process identified as the current process. This mecha-

nism implies a single-process limit on entries in the record of

current access in which the object component is a kernel procedure.

Implicit contributions of this last-mentioned type to the security

state information are created and destroyed by operations on the

kernel semaphore (p's and v's, respectively).

Further elucidation of the topic of implicit security state

information awaits development of the security kernel validation

effort.

Access Rules - The Kernel Functions

The security kernel includes over thirty procedures, approxi-

mately half of which are callable by processes that are not operating

in the kernel domain. The functions that are not externally callable

are called, either directly or indirectly, by functions that are

callable; the noncallable functions are invisible outside the security

kernel. The noncallable functions deal with management of the

computer's physical resources and will not be discussed further here.

14

Of the externally callable functions, some correspond to access

rules of the mathematical model; their names are: give, rescind,

create, delete, getr, getw, enable, disable, dconnect. The functions

give, rescind, create, delete, getr, getw correspond directly to the

access rules of the same or similar names in the model, and dconnect

corresponds to "release" of the model. The kernel contains no

separate get-execute or get-append rules. Also, there is no change-

security-level rule in the kernel since the distinction made by the

model between maximum and current security levels has not been

implemented.

The functions getr and getw are invoked, respectively, when

read/execute and write/read/execute access is desired, and their

invocation results in entries to the Active Segment Table. In order

to make use of access privileges for a given segment, the segment

must be in main memory, and segmentation registers must be loaded

appropriately; these chores are accomplished by invocation of the

function enable. The function disable undoes enable. Since enable

and disable are externally callable, responsibility for management of

a process' address space can be placed outside the security kernel.

The callable functions startp and stopp deal with process crea-

tion and destruction, respectively. Although these functions do not

correspond directly to any rules of the mathematical model, they are

logically dual to the functions create (-object) and delete (-object).

Due to this duality, they fill a need which the model did not address,

but without departing from the spirit of the model.

Two more callable functions which do not correspond directly to

rules of the model but are nonetheless in accord with its principles

are ipcsend and ipcrcv, which implement an interprocess communication

facility. Ipcsend effects a pure write (append) of a message from

15

the requesting process to a designated receiving process. The

message is considered to be of the same security level as the sending

process; consequently, the level of the receiving process must be at

least as high as that of the sending process, as is appropriate for

read access. The security checking is done within ipcsend and is

accordingly omitted from ipcrcv.

Startp may only be invoked by one particular trustworthy pro-

cess, called the executive process. Its security level is high for

the system, so that it may receive messages from any process.

Trustworthiness allows the executive process to send messages to any

process.

The functions p_ and v are operations on semaphores and are used

for control of multiple accesses of processes to segments and for

synchronization signals between processes. These functions are also

used to maintain the security kernel as a critical section. That is,

at most one process can access the security kernel at one time; this

restriction corresponds to the strict sequentiality in the processing

of subject requests that is employed in the mathematical model.

16

SECTION III

DOWNGRADING IN THE CONTEXT OF THE BELL-LaPADULA MODEL

INTRODUCTION

Definition of Downgrading

In the context of the model downgrading refers to the construc-

tion or use of an information path from a given object to one that

has either a lower classification or whose categories form a proper

subset of the categories of the given object. Such action can take

any one of several forms.

Downgrading Approaches

One method of downgrading consists of overriding the current

security level description of an object and writing a new description

for that object. This method of downgrading will be referred to as

"level-change". Declassification of paper documents by level-change

is done on a prescribed schedule as described in [6] .

Writing information with a relatively high security level into

an object of a lower level is another way of downgrading information.

This method will be referred to as "write-down".

Sanitization

"Sanitization" is a third downgrading concept, but it is not

wholly distinct from the two given above. It consists of transform-

ing information in such a way that the resultant is less sensitive

than the original. It is not distinct from level-change and write-

down for two reasons.

17

First, sanitization can be superimposed on either form of down-

grading discussed above. With the level-change method, sanitization

is a single-level procedure that precedes the actual downgrading,

according to the following scheme:

1) Sanitizer reads information, transforms it, and writes

the resultant information in an object whose level is equal to that of

the information read.

2) The security-level description of the object in which the

resultant information resides is changed.

With the write-down method, sanitization and downgrading are done

concurrently, with the sanitizing agent interposed between the ori-

ginal information and the object into which the resultant information

is written. (See Figure 1 for a schematic comparison.)

high level

sanitize

low level

B

>' level-change v'

•R B

sanitize
during
read-high-write-low

Figure 1. Temporal Interpretations of Sanitization

A second aspect of sanitization is the flexibility of the term

"transformation". The computation of statistical measures of a popu-

lation will provide an example of the range of meaning of this word.

Suppose a file contains the names and weights of a certain group of

18

men. One could transform the data in the file variously by:

computing the mean of the weights; or

grouping the weights into intervals and drawing a histogram; or

listing the men's names in ascending order of their weights; or

duplicating the file (the identity transformation).

That is, data can be blurred to widely varying degrees, and each

degree of blurring represents a sanitization. Thus, a precise descrip-

tion of sanitization is highly application-dependent.

Internal and External Considerations

This last observation brings us to a discussion of external and

internal considerations for downgrading. The Bell-LaPadula model for

secure systems deals solely in terms of external controls. These

include relations among entities in a system (for example, who has

access to what) and attributes of an entity (such as a security

classification). An example of an internal issue is the choice of a

sanitizing transformation suited to the format and sensitivity of

information to be transformed in a downgrading scheme.

If a system design that includes a downgrading capability is to

be at all flexible and responsive to a user's needs, some portion of

the downgrading procedures must depend upon internal requirements.

On the other hand, external controls have the advantage that they can

be designed and certified at an earlier stage of development than can

internal controls, and before the system is tied to a particular

application.

In view of these observations on external and internal considerations,

the following questions are relevant:

1) For a given downgrading approach, what external controls can

be devised?
19

2) How do such external controls affect the Bell-LaPadula

model?

It is to these question that this section is addressed.

APPROACHES TO DOWNGRADING: MODEL IMPACT

In this section we will describe the forms that the two down-

grading approaches introduced in the preceding subsection would take

in the context of the Bell-LaPadula model of a secure computer sys-

tem. Relative merits will be discussed in qualitative terms. The

review of the Bell-LaPadula model included in the previous section

was intended to set the context of that which follows.

Level-Change

The level-change approach would be grafted onto the model by

the addition of a rule to ID,,,, the rule set of ESD-TR-73-278, Volume
iii

III. The level-change rule would have as arguments:

a subject name (the subject requesting the change);

an object name (the object whose level is to be changed);

a classification

a category

(the new security description of the object)

Given arguments of the proper form, the classification and cate-

gory of the object referred to would be changed as requested if all

appropriate criteria were satisfied. These criteria are:

1. The desired level of the object is not above its current

level. This requirement, if satisfied, ensures that the level-change

rule is security-preserving; this much is guaranteed by the Revised

Basic Security Theorem of ESD-TR-73-278, Volume 1.

20

2. The desired level of the object is not below that of its

directory. This requirement ensures the preservation of compatibility,

which means that the security level of objects increases (or at least

does not decrease) as one moves along the object hierarchy tree away

from the root.

3 The requesting subject must have write-access to the

directory of the object whose level is to be changed. This is nec-

essary in order to record the change.

4. The desired level is not below the current level of any

untrustworthy subject which has current write-access to the object

whose level is to be lowered. This requirement prevents a *-property

violation.

5. The subject has permission to lower the object's level.

6. The object contains no information which should not be

accessible at the desired level of the object.

Criteria 5 (downgrading power) and 6 (object integrity) repre-

sent departures from the context of the model. They warrant separate

discussion at this point.

Downgrading Power

Granting permission to lower the security level of an object

implies reference to data which does not appear in the model. This

data could take one (or a combination) of the following forms:

a simple downgrading-power flag for a subject;

a classification and category range over which an empowered

subject may exercise its power;

downgrading empowerment on a per-subject, per-object basis.

21

Data structures supporting these forms of permission would be

part of an external control mechanism, and therefore could be

written into the model. The forms of permission listed above were

not derived from any set of downgrading procedures in current use,

but are means to serve solely as illustrations of the concept of

empowerment permission. Consequently, it may be advisable to include

in the kernel a facility for recognition of user-defined external

controls of this nature.

Object Integrity

The requirement of object integrity (that the object whose level

is to be lowered contains no information which should not be accessi-

ble at the desired level of the object) may strike one as being out

of place in a discussion of modifications to the Bell-LaPadula model,

since the use of internal characteristics for the purpose of meeting

this requirement seems to be unavoidable. However, the burden of

judgment that would rest upon internal mechanisms could be lightened

by reference to historical records of external relationships among

subjects and objects in the system. The value of such records is not

confined within the level-change approach to downgrading, but extends

to the write-down methods. Therefore, a more detailed discussion of

this topic will be deferred.

Write-Down

A write-down capability is latent in the current model of a

secure system, and can be exercised by a trustworthy subject.

The concept of a trustworthy subject was not introduced into

the model for the purpose of downgrading, however. Certain subjects

22

need to violate *-property in order for the system to progress — for

example, an "answering service" process that must communicate with

users and initialize processes of various levels. Accordingly,

members of a designated set of subjects would be allowed to have

simultaneous read access to a high-level object and write access to
*

a low-level object.

*
The *-property is written in the Bell-LaPadula model in such a way
that information paths established by untrustworthy subjects are of
a single level or lead upwards (with respect to the ordering of
security levels). Since the collection of security levels is not a
linearly ordered set, a subject that is exempted from the *-property
may be able to "crossgrade" as well as downgrade. As an illustra-
tion, considering the following two-classification (secret (S) and
top secret (TS)), two-category (Cl and C2) lattice:

TS, Cl

TS, C1/C2

TS, C2
C1/C2

s, ci rs \& s> c2

An information path from a TS, Cl object to a TS, C2 object pro-
vides a crossgrading example; a TS, Cl to S, C2 path affords both
crossgrading and downgrading opportunities; any path which can be
traveled by following the arrows is a pure downgrading path.

23

The exemption would be justified by certifying that such subjects

would not write down even though they were in a position to do so

(hence the designation "trustworthy").

Although the exemption was modeled, details of its motivation

were not. Consequently, an additional interpretation of trustworthi-

ness is possible. In this interpretation, two types of trustworthy

subjects are distinguished:

1) those subject that are exempted from obeying the

*-property because they will not write-down.

2) those subjects that are exempted in order that they may

write down.

Subjects of the second type are downgraders. Having identified

the downgrading agents, which we will call formularies, we must

decide how to control them. (The term "formulary" is taken from

Hoffman [7]. A formulary, in Hoffman's usage, is a special-purpose

collection of procedures that controls access to data at any desired

level — be it file, record, or even bit level — and whose decisions

that affect access may be based upon the user, the terminals being

used, the time, and the content of the data themselves. The formu-

lary stands between the user (or programs operating on his behalf)

and the system programs that manipulate data items directly. The

aspect of the above description of a formulary that is most relevant

to our situation is content-dependence. (We will also use the word

formulary to denote processes that execute such programs.) The simp-

lest choice (from the modeler's point of view) is to write no further

controls into the model, but to require the formulary writer to

assume all responsibility for the definition of downgrading power

and the safeguarding of object integrity. Structures which might aid

the performance of the latter task are modeled later in this report.

24

Relative Merits of the Approaches

A positive feature of the level-change approach is the distance

its use places between the different functional aspects of the model.

Sanitization and downgrading are separated, and access controls

related to these actions are applied separately.

A disadvantage of this approach is that dynamic alteration of

security levels and maintenance of the *-property interfere with

each other, so that attention to one of the two impairs the function

of the other. Attempts to balance the two features are likely to

clutter the model. For example, before the level of an object can

be lowered, every subject with write access to that object must

release its access in order to maintain the *-property.

Contrastingly, if the write-down approach is adopted, no

alteration of the model is needed, as long as it is deemed acceptable

to place a large portion of the responsibility for the protection of

the system during downgrading upon the formulary writer. If it is

decided to reserve a portion of this role for the kernel, data

structures and record keeping routines would probably need to be

added for support.

Summary

A variety of downgrading controls can be constructed, with a

specific choice of a set of controls dependent upon:

1) the particular downgrading procedures to be used

2) the degree of flexibility desired in the system

3) the degree of complexity deemed acceptable in the primi-

tives and data structures of the system.

25

Since (1) is very vague at this stage, it would be presumptuous to

place values on (2) and (3). Therefore, it seems unwise to clutter

the model with details which may later prove to be of little utility.

Consequently, the write-down interpretation of the trustworthy

subject feature of the model provides the favored approach to down-

grading.

The task before us in implementing downgrading without compro-

mising information consists of solving once more the problem to

which the *-property was addressed, but without allowing *-property

enforcement as a solution. What are needed are safeguards that are

more sensitive to gradations of potential threats that is *-property

enforcement. Some suggestions for structures that will support safe-

guards will be introduced in the subsequent sections.

26

SECTION IV

FORMULARY CONTROLS

Downgrading is to be achieved within the secure computer system

designed for the PDP-11/45 by the use of a class of processes called

formularies. The following sections treat:

1. the definition of a formulary

2. controls inherent in the security kernel

3. user-formulary communication elements

4. user-formulary communication sequence

5. data integrity and correctness of formularies

THE DEFINITION OF A FORMULARY

A formulary is a trustworthy process, and as such it is exempt

from *-property checks. The *-property is enforced in the mathema-

tical model of computer security and therefore in the security kernel

in order to prevent the construction of information paths from high-

level objects. It is assumed that trustworthy processes will not

abuse their ability to construct such a path, which implies that the

code executed by trustworthy processes must be "certified". The

bounds of certification will be explored later.

In the kernel, the special status of trustworthy processes

appears in:

1) the get-write (getw) function—a trustworthy process

may write into a segment of any level up to its own level.

27

2) the interprocess-communication-send (ipcsend) function—

a trustworthy process may send a message to a process of

any level.

The above characteristics implement the defining property of

trustworthy subjects.

CONTROLS INHERENT IN THE SECURITY KERNEL

The controls to which arbitrary processes are subjected by the

security kernel are those of:

(1) security level comparisons;

(2) access control lists:

(3) preservation of compatibility;

(4) *-property enforcement.

The status of formularies as trustworthy processes exempts them from

(4), but the other controls are still applicable. The effects of

these other controls are:

(1) a process can write on segments of its own or lower

security level;

(2) a process can only attempt to gain access to those seg-

ments to which it has been given specific access per-

mission;

(3) a segment must have a security level greater than or

equal to that of the directory in which it is described.

Let us posit a sequence of steps in which a formulary process is

invoked by a user process. We will first examine the conditions

imposed upon the elements of such a sequence.

28

USER-FORMULARY COMMUNICATION ELEMENTS

The elements of a user-formulary communications and downgrading

sequence include:

A) a user process that wishes to have some information

transformed to information of a different security level;

B) a segment (or segments) in which the information to be

transformed resides;

C) a formulary process;

D) instructions (i.e., parameters) for the formulary,

supplied by the user process;

E) a segment (or segments) in which the results of down-

grading are written;

F) synchronization signals.

Recall that a security level has two components, a classifica-

tion and a set of formal access categories. Classifications are

ordered linearly (unclassified < confidential < secret < top secret),

while the sets of formal access categories are partially ordered by

set inclusion (—). This pair of orderings give rise to an ordering

(symbolized by <L , as in [9]) of security levels given by

(class.. , cat..) JS. (class„, cat„) if and only if

class.. < class- and cat1 £ cat„.

29

Elements A-E listed above have security levels associated with

them (A and C as processes; B, D, E as segments or segment-resident

information), and (F) does also if such signals are transmitted

through interprocess communications channels. We will refer to the

security levels of A E as L , L , L , L , L , respectively (the

subscripts standing for user, operand, formulary, parameter, results).

Ignoring both model and design constraints and approaching the

downgrading situation simple-mindedly, there are four access right

relationships which must obtain:

a) The user can write the parameters

b) The formulary can read the parameters

c) The formulary has read access to the operand segment(s)

d) The formulary has write access to the result segment(s)

If security level constraints are considered, the above access

right relationships require:

a') L = L (untrustworthy processes write only at their own
levels);

*b') Lf^Lp;

C) Lf^LQ;

d') Lf—L (since a formulary is trustworthy).

*
L^i^-L means L 5LL... Also, Cs. means "J^ but not equal"
f p p f M

30

These relationships can be summarized graphically by

r / r v

w
u > P

Graph 1,

Although the term "downgrading" suggests L E* L , this relation

is not included as a necessary one. Since the security levels form

a nonlinear lattice in their ordering, "L t* L " would prevent the

transformation of information to a different (as opposed to merely

lower) level.

The relations described above can be reduced in number if

parameters are transmitted via an interprocess communication mecha-

nism instead of being written in a segment. If this route is taken,

(a), (a'), (b) , (b') above can be eliminated and replaced with

Diagrams of this type will be used to illustrate security level/access
X

right combinations. They are interpreted as follows: 4-x means that
Y

X has access x to Y, and the security level of X is greater than or

equal that of Y. The access right label (x) maY be omitted, and a

horizontal connection indicates necessary equality of security levels.

31

(e) The user can use an ipc channel to the formulary, which

implies

which yields (together with (c) and (d) the diagram

Graph 2.

Subsequent questions that must be considered include:

1) How does the formulary gain access to the operand segment?

2) How does the formulary gain access to the result segment?

3) How does the user relate to the operand segment?

4) How does the user relate to the result segment?

Security levels aside, in order for the formulary to access a

given segment Y, process X (which may be the user, the formulary

itself, the executive, or some other process) must add the formulary

to segment Y's access control list. This requirement in turn implies

that process X must write in the directory of segment Y. If process

X is untrustworthy, then the levels of process X and the directory

of segment Y must be equal.

32

It may not be reasonable to expect the formulary to have

original control over the operand. If the user has control, then

relative security levels and access rights are described by

f

Y L
o (do = directory of operand)

do

Graph 3.

If X is not the user, then

f
X £
0 . .

applies.

do—*— X

Graph 4.

33

If the result segment is specified by the user, then the user

or some other process 2 will create and control the result segment:

f

v w

w
u •< —' dr

w
dr < Z

Graph 5, Graph 6.

If the formulary creates and controls the result segment, then we

have

\
dr

Graph 7.

34

If (for the sake of illustration) the user is to be able to

read the result segment, then Graphs 5, 6, and 7 become

\f w

r \f w
U>T7

w
dr —<—Z

Graph 5'* Graph 6' Graph 7'

Assuming that the disposition of

the parameter question (Graph 1 versus Graph 2),

the operand segment (Graph 3 versus Graph A),

the result segment (Graphs 5, 6, 7),

and the readability of the result segment (5, 6, 7 versus 5', 6', 7')

are independent matters, there are 2*2*3*2 = 24 composite security

level/access right graphs that can be drawn to illustrate relations

among the elements in a user-formulary communication sequence.

Hopefully, a potential for modularity exists that would allow each

of these combinations to be built within one system.

L U L t^ L = L implies L = L = L u dr u u r dr

35

USER-FORMULARY COMMUNICATION SEQUENCES

Regardless of the particular combination chosen from among those

described in the previous section, three steps common to all user-

formulary communication sequences can be identified:

1) A user invokes a formulary, specifying the operation to

be performed and the operand;

2) The executive starts the appropriate formulary process,

if necessary;

3) The formulary operates on the operand data and trans-

forms it.

In this section, a sample user-formulary communication sequence

is described which is based upon a particular (but arbitrary)

choice of security level/access right combinations, and which in-

cludes steps 1-3 above. The sequence is written largely in terms

of security kernel primitives. The lines of the sequence are num-

bered and labeled with letters U, E, or F according to whether the

process executing that line is the user, executive, or formulary.

Before presenting the sample sequence, some words of explanation

are in order on the extent to which a user is aware of the sequence.

It is expected that a user-oriented formulary command language and

associated language interpreter will be devised that will limit a

user's view of the sequence to the invocation described in (1) above.

The lines labeled U in what follows are executed on behalf of the

user, but are hidden from him.

The assumption of the existence of a formulary command language

leads to the problem of the certification of the command language

36

interpreter. Similar questions should be pursued relative to the

file management system, assuming that the user employs it to specify

operands. Discussion of this issue is postponed until the next

section.

The sequence that follows incorporates the following set of

decisions:

1) Parameters are passed in a parameter segment

2) The user controls access to the operand segment (i.e.,

the user can write in the operand's directory)

3) The user controls access to the result segment

4) The user is able to read the result segment

These decisions are summarized in Graph 8, which is a composite of

Graphs 1, 3, and 5'.

f

Graph 8.

Note that the system of two processes and six segments pictured in

Graph 8 occupies at most three security levels, with the (untrustworthy)

37

user process and five of the segments forced to have the same level.

We emphasize that the relations pictured in Graph 8 are a consequence

of decisions (l)-(4) above and controls inherent in the security

kernel.

Finally, the sequence (with annotations to follow):

Ul create result segment

U2 give write access for result segment to formulary

U3 create parameter segment

U4 give self write access for parameter segment

U5 give read access for parameter segment to formulary

U6 getw and enable parameter segment

U7 write in parameter segment:

U7a operand segment identification and operand locations

U7b result segment identification

U7c other parameters

U8 disable and release parameter segment access

U9 give read access for operand segment to formulary

U10 ipesend message to formulary: parameter segment identification

Ull ipesend message to executive: start formulary, if necessary

U12 puts self to sleep.

El ipcrcv message from user

E2 startp formulary, if necessary

Fl ipcrcv message from user

F2 getr and enable access to parameter segment

F3 evaluate segment integrity and decide whether to proceed

F4 getr and enable access to operand segment

F5 getw and enable access to result segment

38

F6 operate: operand—• results

F7 disable and release all accesses to parameter, operand, and

result segments

F8 ipcsend message to user: done

F9 stopp

U12 ipcrcv message from formulary

U13 getr and enable result segment

Remarks and annotations

It must be emphasized that this sequence is meant to serve as

a sample of a class of sequences that could be described. As such,

it is subject to revision or discarding.

U7c, F6. These steps are completely application-dependent.

U8, F7. The principle which is being applied is that a process should

release access to segments when those segments are no longer needed

by that process.

f
U9. This requires the addition of ^ ipc to Graph 8.

u

F3. This step poses the most difficult problems (in terms of security)

for the user-formulary communications sequence. The topic will be dis-

cussed more fully in the following section.

F4, F5. The difficulties alluded to above aside, minimal guarantee

of integrity of the segments involved in the operations of the formu-

lary can be effected during the operations of the formulary. This

guarantee takes the form of a requirement that no other process can

write a segment while a formulary process is reading that segment.

39

The enforcement of this requirement could be accomplished in at

least three ways. First, one could make some modifications to

the security kernel, either to enable or to getr/getw:

1) formulary cannot gain access to a segment that is

being written by another process.

2) A process cannot gain write access to a segment that is

being accessed by a formulary.

The application of the above conditions depends upon an inspection

of the connected process list of an active segment table entry.

Alternatively, a formulary could remove other processes from access

control lists, employing its write-down capability as needed.

A second (and simpler) way would be for the formulary pro-

cess to create a blank segment, copy the operand segment into the

new segment, and operate on the copy.

F5, F7. Recognition of trustworthy processes is incorporated in

the getw and ipcsend function.

F6. This includes a determination that the result segment of a

level suitable for the results derived by the formulary.

OBJECT INTEGRITY AND CORRECTNESS OF FORMULARIES

As stated in section 1, it is assumed that trustworthy processes

will not abuse their ability to construct paths from segments of high

security levels to segments of a lower level. For this assumption

to be valid, formularies need to possess two characteristics that are

40

to some extent independent of each other:

(a) The programs executed by formularies must be known to be

correct in their operations;

(b) The formulary must be able to evaluate the threats to

which operand data has been exposed.

An example that will distinguish between these two points relies

upon the concept of a Trojan horse program. Suppose that intelli-

gence sources (agents, remote sensors) whose physical characteristics

and observations are classified top secret gather data and transmit

it to an intelligence data base. Formularies act upon the TS data

and derive information that will be used by tactical personnel with

secret clearances. (This sequence of events is schematized in

Figure 2.) One of the steps in the operation of the formulary is

agents

-
remote
sensors

-»• TS
files

S
files

tactical
personnel

\

/ \ \

/ \ N
/

TS classification/

/

/

\
\

^

^ S clearance

X
\

data source data

type coordinates time observation

region summary of activity

formulary operation

Figure 2. An Operational Configuration with a Downgrading Scheme

41

the specification and fetching of the TS data upon which the opera-

tions are to be performed. Suppose this step is performed with the

assistance of a general purpose file management system that contains

a section which can masquerade as a formulary when it recognizes TS

data. That is, the file management system is a Trojan horse, and the

correctness of the formulary's transformation operations cannot prevent

the file management system from taking advantage of the trustworthi-

ness (i.e., write-down capability) of the formulary process on whose

behalf it executes. Therefore, the presence of characteristic (a)

coupled with the absence of characteristic (b) abets a situation which

is undesirable from the standpoint of security.

Characteristic (a) appears to be entirely application-dependent.

Consequently, we will assume that the writers of formulary programs

will be able to guarantee its presence, and we will address the pro-

blems posed by characteristic (b).

Directly posed, the question which should be abstracted from the

above example is as follows:

Are the contents of a given segment such that it is safe to

apply a given sanitizing algorithm to them? Phrased in this form,

the question demands an answer which relates to the contents of the

segment. Consequently, in order to solve the problem as stated, a

formulary process must interpose (in time) between its invocation

and the application of its transformation programs either

(a) smart programs that can assess the suitability of the

contents of a segment for downgrading, or

(b) a human with such capabilities.

Resorting to controls such as these both postpones confrontation

with the problem and shifts the burden of its solution to the

42

formulary writer. In order to search for an earlier resolution in

an absolute (rather than content-relative) vein, a less direct

question is in order: What relationship with other subjects and

objects (i.e., process and segments) has a given segment enjoyed

prior to its use as an operand segment by a formulary?

This question, insofar as it can be answered in terms of access

rights and combinations of access rights, is independent of content.

Thus, an attempt can be made to answer it in the presently available

context. We begin by reviewing the components of that context.

The entities that must be related to each other include processes

and segments, programs and data, and the available modes of protec-

tion. Security levels aside, we discern at present two kinds of pro-

cesses (trustworthy and untrustworthy) and two kinds of programs

(certified and uncertified). Processes and programs relate to each

other through the following observations:

Processes seek to gain access to segments.

Program code resides in segments.

Trustworthy processes execute only certified programs.

Note that the last observation does not exclude the possibility

that untrustworthy processes may execute certified programs.

Since all operations upon segments are effected by the execution

of some program code, and since program code resides in segments,

the integrity of a segment can be defined in terms of the segments

that have "touched" it. The access privileges enjoyed by processes

with respect to a given pair of segments determine whether one segment

has touched the other. The access protections that can be afforded

a segment by the 11/45 hardware (without the use of D registers) are

43

for no access, read/execute access, and write/read/execute access;

execute-only is indistinguishable from read/execute. Hence, segments

containing pure program code cannot be treated differently from read-

only data segments.

If a process has read access to segment A and write access to

segment B, then A is capable of touching (i.e., affecting) B. Since

this attempt at integrity analysis purposely avoids the semantics of

a computation and deals only in access rights, no distinction will

be drawn between possessing a capability and exercising a capability.

Thus, we will say that A touches B if A is capable (as described

above) of touching B.

The aforementioned relationship is the most direct touching

possible between distinct segments. It can be used as a building block

either transitively (if A touches B, and B touches C, then A touches

C) or temporally (if a process had read-access to A and has write-

access to B, then A touches B) to construct more complex relation-

ships among segments.

However, complex the relations may be, they admit of a summary

as a one-bit "history" per segment. Namely, if any uncertified seg-

ment has touched a segment A (however touching might be defined),

then the integrity of A may have been compromised. Indeed, given

the convention discussed above that capability = actuality, we assume

that A has been compromised.

This criterion for compromise may have a very restrictive effect

on the use of formularies. For, any process is likely to access a

This subject is elaborated upon in terms of the Bell-LaPadula model
in the next section.

44

low security level uncertified system program (such as a compiler or

file management system) and a given segment concurrently, thereby

rendering the segment unsafe for formularies to operate upon without

the intervention of a human or automatic content analyzer. Thus,

the price paid for the integrity of the system may be non-functionalism.

To relieve this condition, several alternatives are available.

One course of action would be to certify all frequently used system

programs. Given the large size of such programs, this seems an

onerous task, and one that should be avoided.

Another way to alleviate the problem would be to label as non-

malicious those untrustworthy processes that are "known" to be free

of evil intentions, and to allow only such processes to invoke formu-

laries or to touch segments that will be downgraded. This gradation

of untrustworthy processes does not by itself speak to the problem,

since the problem arises from potential properties of segments, not

of processes.

In view of this, it might be more fruitful to introduce a con-

cept of non-maliciousness for segments. The term "non-malicious"

will be discarded as being misleading, for a segment which is not

non-malicious is not necessarily the tool of a malicious agent;

rather, it is not known to be non-malicious. A better adjective than

"non-malicious" is "safe". If a segment is marked as safe, then its

touch will not impair the segments it touches with regard to the

application of formularies.

The justification for attaching the safe label to a given segment

is a matter separate from this operational definition of safety. In

this regard, the concept of "safe object" is analogous to that of

"trustworthy subject", insofar as we define the latter notion in

45

terms of the exceptional properties a trustworthy subject has, without

saying why it has those properties. A segment might merit the appell-

ation "safe" if it were

(a) certified; or

(b) written by trusted personnel and touched only by other

safe segments.

In a refinement of (b) which has been suggested (and which is

akin to the sabotage model mentioned in Section II), a segment would

be safe up to a particular security level. That is, a safe segment

could touch segments with a security level less than or equal to the

designated level without impairing the applicability of formularies

to those segments. The safe label refers to a segment and not to the

program code it might contain. Thus, a malicious user might be able

to copy and alter a system program, but he could not masquerade it as

the original, safe program unless he could assign to the segment(s)

in which the copy resides the level of safety of the original

segment(s).

The usefulness of this last refinement is hampered by the deter-

mination of the limiting security level. If the level that defines

the limit of safety of a segment is the level of the segment, then no

segment may touch one of a higher level without impairing the higher

level segment; that is, after all, the original problem which moti-

vated the current discussion. Thus, in order for the notion of a

limit of safety to be useful, the limit of a segment should be

greater than the level of that segment. A reasonable limit to assign

to a segment would be the level of the process that creates it. This

assignment is reasonable in terms of the Bell-LaPadula model with its

concepts of current and maximum levels of subjects. However, the

current security kernel design recognizes only current levels for

46

processes, and constrains a process to have a level less than or

equal that of any segment it creates. If the assignment of a limit

of safety of a segment were made in the manner suggested above, the

limit would be bounded above by the level of the segment; such an

arrangement is counterproductive. Thus, if the idea of "limit of

safety" is to be useful, some other procedure for the assignment of

the limit must be devised.

The concept of levels of safety permits the problem of the

uncertified file system mentioned earlier to be defined away.

Namely, if it is assumed that the segments comprising the file sys-

tem are safe to the level of every process in the system, then the

problem disappears (as long as the file system itself is untouchable).

Once it has been decided to wave a magic wand over one important

system program in this manner, the extension of the technique to

other programs (such as compilers) can be considered.

In summary, the maintenance of the integrity of a segment can

be accomplished by

(a) controls based upon access rights and security level

comparisons and

(b) automatic or human analysis of the contents of an

operand segment at the time a formulary is invoked.

47

SECTION V

MODELLING DATA PATHS

INTRODUCTION

In this section we will discuss the detection of threats to

data that formularies use as operands. The approach taken starts at

the level of the mathematical model and consists of the construction

of data paths (audit trails) from information contained in the

record of current access.

The possible use of data paths will not be closely specified

here, since such use is highly application-dependent. Rather,

several levels of data paths that can be inferred from the record of

current access will be described. Moreover, at each level of infer-

ence, differing degrees of detail in the data path description will

be available.

TWO PRINCIPLES OF PATH CONSTRUCTION

The data path model that will be developed here relies upon two

principles. They are:

1) A comprehensive record of data paths can be derived from

observations of the record of current access.

2) The relations essential to a description of data paths

are those among objects. Relations that include subjects

only add detail to path descriptions.

The first of these principles is explained and justified easily.

The opportunity to move information arises only from combinations of

access relations. Therefore, analysis of a complete account of

48

access relations will yield all information paths. For the moment

we will ignore the difficult problem of the derivation of all paths.

The most straightforward example of a combination of access

relations that results in an information path consists of a process

that simultaneously enjoys read access to one segment and write access

to another. This most obvious and direct situation does not exhaust

all arrangements that are of interest. Simultaneity of the access

relations or reliance upon a single process may be omitted from the

above example. A path may still exist between two segments if

access relations exist during the progress of the system that

suffice to connect them.

To reemphasize the first principle, regardless of the complexity

of relations that contribute to a data path, the path can be inferred

solely from a record of access relations. Note, however, that the

completeness of the data path record is directly dependent upon the

completeness of the record of access relations.

The second principle, that path descriptions should be object-

based, derives from the observation that information resides in

objects. An object-object link is the minimal necessary evidence of

an information path. The identity of the subject or subjects that

effect such a link are embellishments that are probably useful addi-

tions to the path description, but can be done without at the lowest

level of the description. The same comment applies to the access

modes that are used in the construction of a path.

49

IDENTIFICATION OF PATH TYPES

The record of current access (the b of the model) is a collection

of entries of the form (subject, object, access mode) that conveys

the information that a particular subject currently enjoys a specified

mode of access to a specified object. If the record contains the

pair of entries (S , 0., read) and (S , 0 , write), a path from 0. to
i J Ik 2

0, may be inferred; this arrangement is a formal version of the "most

straightforward example" of the previous subsection (Figure 3).

It is worthwhile to describe a few variations on this theme. If

there are entries (S , 0, , read) and (S , 0 , write) in addition to
m k m n

the two entries given above, then there is a path from 0 to 0

(Figure 4). If the third or fourth entry is recorded after the

other entries have been made, the path from 0. to 0 exists (Figure

5. Further, if the first or second entry is removed, the path

still exists as a feature of interest (Figure 6).

A more elaborate example is indicated by Figure 7. (Subjects

are suppressed in Figure 7, in accordance with the principle of

object-based paths). Supose that at time t there are paths from

object A to object B and from B to object C. At time t+1 the link

between B and C is broken; at time t+2, paths from D to A and from

C to E are established. Beyond time t+2, information which at one

time lay in A may come to reside in E, so that a path from A to E

should be noted. However, information cannot move from D to c, so

that path from D to C need not be noted.

50

w

0
i i
i
i
i

*
0

Figure 3. Direct Path

v

* VJ

0
1

1

j \
1 \

0 /
1
1

•
0

k /

n

Figure 4. Indirect Path

-Z ^ VJ
VJ

0

VJ
la

: \

: /

s;
w w

0

\

S 1
k

v
/

*
*

I
/

VJ w

0

time t

Figure 5.

0
n

time t+1

Evolving Indirect
Path (Entries Intact)

0

time t

I
! /

n

time t+1

Figure 6. Evolving Indirect
Path (Entry Removed)

51

• I

c

time t

\1

B I

/

C

time t+1

X

A v

\\

\\
\ \

• I \

B ' X

. I X
* I / v
V • \ I

c

time t+2

Figure 7. Evolving Nonpath

We can characterize the types of paths described above concisely:

1) direct (Figure 3)

2) indirect (Figure 4)

3) time-dependent (Figures 5, 6, 7)

Figure 7 also indicates an unuseable path, which we will call a

4) nonpath

FORMALIZING PATHS

We begin by refining the principle of path derivability, as

follows:

Assume that every data path can be built by concatenation of direct

paths; and that all direct paths can be inferred from the record of

52

current access.

Thus, the manner in which direct paths are inferred from the

record of current access is crucial to data path construction.

Postulate the existence of a procedure that extracts direct paths

from a record-of-current-access-like set. Formally, such a proce-

dure corresponds to a function.

dD: 6-x©—•^ (ixOl x OL, where Bcjx(*xd.
D

That is, given a pair of objects 0., 0 , a search is made through B,

which is a collection of entries of the form (subject, object,

access mode), for pairs of entries

(S±, 0 , x1), (S±, 0k, x2)

which indicate that there is a direct path from 0. to 0, . When such

a pair is found, the triple (S., x.. , x„) is used to represent the

link between 0. and 0, . d_(0., 0.) is the collection of all such
J k B j' k

triples.

If x1 = read, x„ = write, then (S. , x.. , x„) represents the

arrangement of Figure 3. Values of x.. = write, x~ = read, or x, =

x„ = read presumably would not occur in the direct path record, for

these combinations do not promote the passing of information.

The existence of a direct path from 0. to 0, turns on whether
J k

d (0., 0) contains any entries or is an empty set. If it is

desirable to know how a path was built, or who built it, the value of

d (0 , 0.) can be inspected in detail.
B j k.

53

The semantics of information passage are most important at the

level of direct paths. Beyond that level, construction of data

paths is largely a combinatorial and set theoretical problem. For

an unchanging set B, a path is formalized as a sequence 0. , 0. ,...,
Jl j2

0. of objects such that d (0. , 0.) ^ empty set, p+l,...,k=l;
jk B 2v jP+1

that is, there are direct paths between consecutive objects in the

sequence. The collection of all paths derivable from B is denoted

by P(B).

Once again, several levels of detail are available in the use of

data paths. A given implementation of the data path model might

make use of

the existence of a path from 0. to 0. ;
31 Jk

the full list of objects comprising the path;

the subjects that effect the direct paths along the path

from 0. to 0 ;
3l jk

or the access modes available to form the direct paths

between consecutive objects.

As a system for which data paths are to be constructed evolves,

the record of current access changes. Suppose (following Bell and

LaPadula) that the sequence of records of current access of a

system is denoted by b , t=0,l,2,... A likely candidate for a

dynamic record of data paths can be constructed by aggregating all

records of current access and using the aggregate as the "B" needed

for the construction of data paths. Formally, if we denote the

54

data path record to time t by P , then

P(t)=P(i b (i))
i=o

Again, several levels of detail are possible in the use of this

model.

This model not only covers the useable paths of Figures 5,

6, and 7, but it also includes the unuseable path of Figure 7.

In this sense, therefore, the proposed model finds too many paths.

However, no attempt will be made at this point to refine the model

to eliminate such paths. The reason for this decision is that

Figure 7 illustrates the simplest sort of unuseable path. The sys-

tem of objects pictured is small, isolated, and contains no loops;

the recognition of unuseable paths in general is a difficult problem

whose solution would exact a high cost in complexity.

USING THE DATA PATH MODEL

Assume that a security kernel that is based upon the Bell-Lapadula

model has been designed. The first step in the design of a data path

record is the determination of those combinations of access rights

that constitute direct paths. We emphasize once more that the record

of current access must be complete with regard to the collection of

objects. For example, the Active Segment Table of the PDP-11/45

security kernel is only part of the record of current access, since it

55

(the AST) only describes which processes have direct read or write

access to one type of object (namely, segments).

The next step is the development of an algorithm that will

extract direct paths from the data path base (the set that has been

called "B" to this point). The data path base itself must be updated

with each change in the record of current access. The data path base

will be a larger structure than the record of current access (in

terms of the number of entries), and it will be searched often.

Therefore, maintenance of the data path base includes an organization

(and reorganization) which will facilitate searches.

Assuming that the data path base is faithfully maintained, the

data path record need only be recomputed or updated when it is needed,

since the accuracy of the data path record is dependent only upon an

accurate data path base.

data structure and operations entry forms

record of current access (S±, 0 , x)

update with changes in security state

data path base

extraction algorithm

direct paths

path construction algorithm

data path record

(Si, 0 , x)

(S±I xx,x2) e dB(0 , 0k)

(0^, 0j2 0jk)ep(B)

Figure 8. Schematic Flow of Data Path Model

56

CONCLUSION

Controlled downgrading by formularies requires that data is

transformed correctly, and that transformations are only performed

upon data which has not been mishandled prior to formulary invocation.

The first requirement is application-dependent, but the second require-

ment can be partially met by reference to a record of data paths that,

in its abstract form, is phrased in terms of the Bell-LaPadula model

of a secure system.

57

LIST OF REFERENCES

1. S. B. Lipner, "Computer Security Research and Development
Requirements," MITRE Corporation, MTP-142, February 1973.

2. D. E. Bell and L. LaPadula, "Secure Computer Systems," ESD-TR-
73-278, Volumes I, II, III, November 1973 - April 1974.

3. W. L. Schiller, "Design of a Security Kernel for the PDP-11/45,"
ESD-TR-73-294, December 1973.

4. PDP-11/45 Processor Manual, Digital Equipment Corporation, 1973.

5. G. S. Graham and P. J. Denning, "Protection Principles and Practice,"
AFIPS Conference Proceedings, Volume 44, SJCC (1972).

6. AFR-205-1, "Safeguarding Classified Information," Department of the
Air Force, January 1968.

7. L. J. Hoffman, "The Formulary Model for Access Control and Privacy
in Computer Systems," dissertation, Stanford Linear Accelerator
Center, May 1970.

8. J. C. C. White, "Design of a Secure File Management System,"
ESD-TR-75-57, April 1975.

9. Stanley R. Ames, Jr., "File Attributes and Their Relationship to
Computer Security," M. S. dissertation, Case Western Reserve
University, June 1974.

58

